Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome-wide analysis of a TaLEA-introduced transgenic Populus simonii × Populus nigra dwarf mutant.

Identifieur interne : 002A66 ( Main/Exploration ); précédent : 002A65; suivant : 002A67

Genome-wide analysis of a TaLEA-introduced transgenic Populus simonii × Populus nigra dwarf mutant.

Auteurs : Hong-Mei Yuan ; Su Chen ; Lin Lin ; Rui Wei ; Hui-Yu Li ; Gui-Feng Liu ; Jing Jiang

Source :

RBID : pubmed:22489122

Descripteurs français

English descriptors

Abstract

A dwarf mutant (dwf1) was obtained among 15 transgenic lines, when TaLEA (Tamarix androssowii late embryogenesis abundant gene) was introduced into Populus simonii × Populus nigra by Agrobacterium tumefaciens-mediated transformation. Under the same growth conditions, dwf1 height was significantly reduced compared with the wild type and the other transgenic lines. Because only one transgenic line (dwf1) displayed the dwarf phenotype, we considered that T-DNA insertion sites may play a role in the mutant formation. The mechanisms underlying this effect were investigated using TAIL-PCR (thermal asymmetric interlaced PCR) and microarrays methods. According to the TAIL-PCR results, two flanking sequences located on chromosome IV and VIII respectively, were cloned. The results indicated the integration of two independent T-DNA copies. We searched for the potential genes near to the T-DNA insertions. The nearest gene was a putative poplar AP2 transcription factor (GI: 224073210). Expression analysis showed that AP2 was up-regulated in dwf1 compared with the wild type and the other transgenic lines. According to the microarrays results, a total of 537 genes involved in hydrolase, kinase and transcription factor activities, as well as protein and nucleotide binding, showed significant alterations in gene expression. These genes were expressed in more than 60 metabolic pathways, including starch, sucrose, galactose and glycerolipid metabolism and phenylpropanoids and flavonoid biosyntheses. Our transcriptome and T-DNA insertion sites analyses might provide some useful insights into the dwarf mutant formation.

DOI: 10.3390/ijms13032744
PubMed: 22489122
PubMed Central: PMC3317382


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-wide analysis of a TaLEA-introduced transgenic Populus simonii × Populus nigra dwarf mutant.</title>
<author>
<name sortKey="Yuan, Hong Mei" sort="Yuan, Hong Mei" uniqKey="Yuan H" first="Hong-Mei" last="Yuan">Hong-Mei Yuan</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; E-Mails: chensunefu@163.com (S.C.); yuanhm1979@163.com (H.-M.Y.); linlin198212@126.com (L.L.); wrrachel@yahoo.com.cn (R.W.); 44919635@qq.com (H.-Y.L.); liuguifeng@126.com (G.-F.L.).</nlm:affiliation>
<wicri:noCountry code="subField">China; E-Mails: chensunefu@163.com</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Chen, Su" sort="Chen, Su" uniqKey="Chen S" first="Su" last="Chen">Su Chen</name>
</author>
<author>
<name sortKey="Lin, Lin" sort="Lin, Lin" uniqKey="Lin L" first="Lin" last="Lin">Lin Lin</name>
</author>
<author>
<name sortKey="Wei, Rui" sort="Wei, Rui" uniqKey="Wei R" first="Rui" last="Wei">Rui Wei</name>
</author>
<author>
<name sortKey="Li, Hui Yu" sort="Li, Hui Yu" uniqKey="Li H" first="Hui-Yu" last="Li">Hui-Yu Li</name>
</author>
<author>
<name sortKey="Liu, Gui Feng" sort="Liu, Gui Feng" uniqKey="Liu G" first="Gui-Feng" last="Liu">Gui-Feng Liu</name>
</author>
<author>
<name sortKey="Jiang, Jing" sort="Jiang, Jing" uniqKey="Jiang J" first="Jing" last="Jiang">Jing Jiang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22489122</idno>
<idno type="pmid">22489122</idno>
<idno type="doi">10.3390/ijms13032744</idno>
<idno type="pmc">PMC3317382</idno>
<idno type="wicri:Area/Main/Corpus">002A84</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002A84</idno>
<idno type="wicri:Area/Main/Curation">002A84</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002A84</idno>
<idno type="wicri:Area/Main/Exploration">002A84</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome-wide analysis of a TaLEA-introduced transgenic Populus simonii × Populus nigra dwarf mutant.</title>
<author>
<name sortKey="Yuan, Hong Mei" sort="Yuan, Hong Mei" uniqKey="Yuan H" first="Hong-Mei" last="Yuan">Hong-Mei Yuan</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; E-Mails: chensunefu@163.com (S.C.); yuanhm1979@163.com (H.-M.Y.); linlin198212@126.com (L.L.); wrrachel@yahoo.com.cn (R.W.); 44919635@qq.com (H.-Y.L.); liuguifeng@126.com (G.-F.L.).</nlm:affiliation>
<wicri:noCountry code="subField">China; E-Mails: chensunefu@163.com</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Chen, Su" sort="Chen, Su" uniqKey="Chen S" first="Su" last="Chen">Su Chen</name>
</author>
<author>
<name sortKey="Lin, Lin" sort="Lin, Lin" uniqKey="Lin L" first="Lin" last="Lin">Lin Lin</name>
</author>
<author>
<name sortKey="Wei, Rui" sort="Wei, Rui" uniqKey="Wei R" first="Rui" last="Wei">Rui Wei</name>
</author>
<author>
<name sortKey="Li, Hui Yu" sort="Li, Hui Yu" uniqKey="Li H" first="Hui-Yu" last="Li">Hui-Yu Li</name>
</author>
<author>
<name sortKey="Liu, Gui Feng" sort="Liu, Gui Feng" uniqKey="Liu G" first="Gui-Feng" last="Liu">Gui-Feng Liu</name>
</author>
<author>
<name sortKey="Jiang, Jing" sort="Jiang, Jing" uniqKey="Jiang J" first="Jing" last="Jiang">Jing Jiang</name>
</author>
</analytic>
<series>
<title level="j">International journal of molecular sciences</title>
<idno type="eISSN">1422-0067</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence (MeSH)</term>
<term>Chlorophyll (metabolism)</term>
<term>Crosses, Genetic (MeSH)</term>
<term>DNA, Bacterial (genetics)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genome, Plant (genetics)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutation (genetics)</term>
<term>Phenotype (MeSH)</term>
<term>Plant Growth Regulators (genetics)</term>
<term>Plant Leaves (anatomy & histology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (anatomy & histology)</term>
<term>Populus (genetics)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Reproducibility of Results (MeSH)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Signal Transduction (genetics)</term>
<term>Tamaricaceae (genetics)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN bactérien (génétique)</term>
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Alignement de séquences (MeSH)</term>
<term>Chlorophylle (métabolisme)</term>
<term>Croisements génétiques (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Facteur de croissance végétal (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Feuilles de plante (anatomie et histologie)</term>
<term>Gènes de plante (MeSH)</term>
<term>Génome végétal (génétique)</term>
<term>Mutation (génétique)</term>
<term>Phénotype (MeSH)</term>
<term>Populus (anatomie et histologie)</term>
<term>Populus (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Reproductibilité des résultats (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Tamaricaceae (génétique)</term>
<term>Transduction du signal (génétique)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Bacterial</term>
<term>Plant Growth Regulators</term>
<term>Plant Proteins</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Chlorophyll</term>
<term>Plant Proteins</term>
<term>RNA, Messenger</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genome, Plant</term>
<term>Mutation</term>
<term>Populus</term>
<term>Signal Transduction</term>
<term>Tamaricaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN bactérien</term>
<term>ARN messager</term>
<term>Facteur de croissance végétal</term>
<term>Génome végétal</term>
<term>Mutation</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Tamaricaceae</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Chlorophylle</term>
<term>Facteurs de transcription</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Crosses, Genetic</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Molecular Sequence Data</term>
<term>Phenotype</term>
<term>Plants, Genetically Modified</term>
<term>Reproducibility of Results</term>
<term>Sequence Alignment</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Croisements génétiques</term>
<term>Données de séquences moléculaires</term>
<term>Gènes de plante</term>
<term>Phénotype</term>
<term>Reproductibilité des résultats</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Séquence nucléotidique</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A dwarf mutant (dwf1) was obtained among 15 transgenic lines, when TaLEA (Tamarix androssowii late embryogenesis abundant gene) was introduced into Populus simonii × Populus nigra by Agrobacterium tumefaciens-mediated transformation. Under the same growth conditions, dwf1 height was significantly reduced compared with the wild type and the other transgenic lines. Because only one transgenic line (dwf1) displayed the dwarf phenotype, we considered that T-DNA insertion sites may play a role in the mutant formation. The mechanisms underlying this effect were investigated using TAIL-PCR (thermal asymmetric interlaced PCR) and microarrays methods. According to the TAIL-PCR results, two flanking sequences located on chromosome IV and VIII respectively, were cloned. The results indicated the integration of two independent T-DNA copies. We searched for the potential genes near to the T-DNA insertions. The nearest gene was a putative poplar AP2 transcription factor (GI: 224073210). Expression analysis showed that AP2 was up-regulated in dwf1 compared with the wild type and the other transgenic lines. According to the microarrays results, a total of 537 genes involved in hydrolase, kinase and transcription factor activities, as well as protein and nucleotide binding, showed significant alterations in gene expression. These genes were expressed in more than 60 metabolic pathways, including starch, sucrose, galactose and glycerolipid metabolism and phenylpropanoids and flavonoid biosyntheses. Our transcriptome and T-DNA insertion sites analyses might provide some useful insights into the dwarf mutant formation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22489122</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>07</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1422-0067</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>International journal of molecular sciences</Title>
<ISOAbbreviation>Int J Mol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome-wide analysis of a TaLEA-introduced transgenic Populus simonii × Populus nigra dwarf mutant.</ArticleTitle>
<Pagination>
<MedlinePgn>2744-62</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/ijms13032744</ELocationID>
<Abstract>
<AbstractText>A dwarf mutant (dwf1) was obtained among 15 transgenic lines, when TaLEA (Tamarix androssowii late embryogenesis abundant gene) was introduced into Populus simonii × Populus nigra by Agrobacterium tumefaciens-mediated transformation. Under the same growth conditions, dwf1 height was significantly reduced compared with the wild type and the other transgenic lines. Because only one transgenic line (dwf1) displayed the dwarf phenotype, we considered that T-DNA insertion sites may play a role in the mutant formation. The mechanisms underlying this effect were investigated using TAIL-PCR (thermal asymmetric interlaced PCR) and microarrays methods. According to the TAIL-PCR results, two flanking sequences located on chromosome IV and VIII respectively, were cloned. The results indicated the integration of two independent T-DNA copies. We searched for the potential genes near to the T-DNA insertions. The nearest gene was a putative poplar AP2 transcription factor (GI: 224073210). Expression analysis showed that AP2 was up-regulated in dwf1 compared with the wild type and the other transgenic lines. According to the microarrays results, a total of 537 genes involved in hydrolase, kinase and transcription factor activities, as well as protein and nucleotide binding, showed significant alterations in gene expression. These genes were expressed in more than 60 metabolic pathways, including starch, sucrose, galactose and glycerolipid metabolism and phenylpropanoids and flavonoid biosyntheses. Our transcriptome and T-DNA insertion sites analyses might provide some useful insights into the dwarf mutant formation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yuan</LastName>
<ForeName>Hong-Mei</ForeName>
<Initials>HM</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; E-Mails: chensunefu@163.com (S.C.); yuanhm1979@163.com (H.-M.Y.); linlin198212@126.com (L.L.); wrrachel@yahoo.com.cn (R.W.); 44919635@qq.com (H.-Y.L.); liuguifeng@126.com (G.-F.L.).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Su</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Lin</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wei</LastName>
<ForeName>Rui</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Hui-Yu</ForeName>
<Initials>HY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Gui-Feng</ForeName>
<Initials>GF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>03</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Int J Mol Sci</MedlineTA>
<NlmUniqueID>101092791</NlmUniqueID>
<ISSNLinking>1422-0067</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C036483">T-DNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C066246">late embryogenesis abundant protein, plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="N">Chlorophyll</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003433" MajorTopicYN="Y">Crosses, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="Y">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032363" MajorTopicYN="N">Tamaricaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">AP2</Keyword>
<Keyword MajorTopicYN="N">RAV</Keyword>
<Keyword MajorTopicYN="N">dwarf</Keyword>
<Keyword MajorTopicYN="N">microarrays</Keyword>
<Keyword MajorTopicYN="N">mutant</Keyword>
<Keyword MajorTopicYN="N">poplar</Keyword>
</KeywordList>
<GeneralNote Owner="NLM">Original DateCompleted: 20130704</GeneralNote>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>10</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2011</Year>
<Month>11</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>02</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22489122</ArticleId>
<ArticleId IdType="doi">10.3390/ijms13032744</ArticleId>
<ArticleId IdType="pii">ijms-13-02744</ArticleId>
<ArticleId IdType="pmc">PMC3317382</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Tree Physiol. 2005 Oct;25(10):1273-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16076776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Nov;5(11):1440-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21057193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2009 Oct;11(10):1254-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19734888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2008 Oct;3(10):813-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19704566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11638-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11027362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(4):1123-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19276192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(4):1109-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19196749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19622176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2009 Feb 28;27(2):183-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19277500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2011 Feb;52(2):344-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21169347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2009 Sep 18;387(2):365-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19607808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Dec;14(12):2985-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12468722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 May;227(6):1389-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18297307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 May 26;435(7041):441-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2011 Jan;75(1-2):107-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21069430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1995 Sep;8(3):457-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7550382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 May;5(5):301-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:137-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14502988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 1995 Feb 10;25(3):674-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7759102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Oct;151(2):936-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19700558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jun;22(6):1777-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20581303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2006 Sep;67(17):1895-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16872648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Mar;17(3):776-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15705958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jul;132(3):1283-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2009 Nov;9(4):513-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19488798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Jul;59(1):100-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19309453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:719</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21171999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1998 Jan 15;12(2):198-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9436980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Sep;61(14):3947-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20826506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Oct;14(10):535-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Aug 9;448(7154):661-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17637677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Nov 1;28(21):4076-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11058102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yao Xue Xue Bao. 2010 Sep;45(9):1188-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21351578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2006 Dec;34(Pt 6):1209-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17073787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2005 Jul;9(1):109-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15992545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11309499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Feb;140(2):411-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Nov;56(4):613-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18643985</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Chen, Su" sort="Chen, Su" uniqKey="Chen S" first="Su" last="Chen">Su Chen</name>
<name sortKey="Jiang, Jing" sort="Jiang, Jing" uniqKey="Jiang J" first="Jing" last="Jiang">Jing Jiang</name>
<name sortKey="Li, Hui Yu" sort="Li, Hui Yu" uniqKey="Li H" first="Hui-Yu" last="Li">Hui-Yu Li</name>
<name sortKey="Lin, Lin" sort="Lin, Lin" uniqKey="Lin L" first="Lin" last="Lin">Lin Lin</name>
<name sortKey="Liu, Gui Feng" sort="Liu, Gui Feng" uniqKey="Liu G" first="Gui-Feng" last="Liu">Gui-Feng Liu</name>
<name sortKey="Wei, Rui" sort="Wei, Rui" uniqKey="Wei R" first="Rui" last="Wei">Rui Wei</name>
<name sortKey="Yuan, Hong Mei" sort="Yuan, Hong Mei" uniqKey="Yuan H" first="Hong-Mei" last="Yuan">Hong-Mei Yuan</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A66 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002A66 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22489122
   |texte=   Genome-wide analysis of a TaLEA-introduced transgenic Populus simonii × Populus nigra dwarf mutant.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22489122" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020